Decomposition of polynomial sets into characteristic pairs
نویسندگان
چکیده
A characteristic pair is a pair (G, C) of polynomial sets in which G is a reduced lexicographic Gröbner basis, C is the minimal triangular set contained in G, and C is normal. In this paper, we show that any finite polynomial set P can be decomposed algorithmically into finitely many characteristic pairs with associated zero relations, which provide representations for the zero set of P in terms of those of Gröbner bases and those of triangular sets. The algorithm we propose for the decomposition makes use of the inherent connection between Ritt characteristic sets and lexicographic Gröbner bases and is based essentially on the structural properties and the computation of lexicographic Gröbner bases. Several nice properties about the decomposition and the resulting characteristic pairs, in particular relationships between the Gröbner basis and the triangular set in each pair, are established. Examples are given to illustrate the algorithm and some of the properties.
منابع مشابه
Determination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملOn the Theories of Triangular Sets
Triangular sets appear under various names in many papers concerning systems of polynomial equations. Ritt (1932) introduced them as characteristic sets. He described also an algorithm for solving polynomial systems by computing characteristic sets of prime ideals and factorizing in field extensions. Characteristic sets of prime ideals have good properties but factorization in algebraic extensi...
متن کاملNumerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method
In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.
متن کاملA characteristic set method for ordinary difference polynomial systems
We prove several basic properties for difference ascending chains including a necessary and sufficient condition for an ascending chain to be the characteristic set of its saturation ideal and a necessary and sufficient condition for an ascending chain to be the characteristic set of a reflexive prime ideal. Based on these properties, we propose an algorithm to decompose the zero set of a finit...
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1702.08664 شماره
صفحات -
تاریخ انتشار 2017